Yarkovsky/YORP chronology of asteroid families
نویسندگان
چکیده
Asteroid families are the byproducts of catastrophic collisions whose fragments form clusters in proper semimajor axis, eccentricity, and inclination space. Although many families have been observed in the main asteroid belt, only two very young families, Karin and Veritas, have well-determined ages. The ages of other families are needed, however, if we hope to infer information about their ejection velocity fields, space weathering processes, etc. In this paper, we developed a method that allows us to estimate the ages of moderately young asteroid families (approximately in between 0.1 and 1 Gyr). We apply it to four suitable cases—Erigone, Massalia, Merxia, and Astrid—and derive their likely ages and approximate ejection velocity fields. We find that Erigone and Merxia were produced by large catastrophic disruption events (i.e., parent body 100 km) that occurred approximately 280 and 330 Myr ago, respectively. The Massalia family was likely produced by a cratering event on Asteroid (20) Massalia less than 200 Myr ago. Finally, the Astrid family, which was produced by the disruption of a 60–70 km asteroid, is 100–200 Myr old, though there is considerable uncertainty in this result. We estimate that the initial ejection velocities for these families were only a few tens of meters per second, consistent with numerical hydrocode models of asteroid impacts. Our results help to verify that asteroid families are constantly undergoing dynamical orbital evolution from thermal (Yarkovsky) forces and spin vector evolution from thermal (YORP) torques. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
The Influence of Rough Surface Thermal-Infrared Beaming on the Yarkovsky and YORP Effects
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semi-major axis drift and the YORP effect causes changes in the rotation rate and pole ...
متن کاملThe influence of global self-heating on the Yarkovsky and YORP effects
In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the YarkovskyO'Keefe-Radzievskii-Paddack (YORP) effec...
متن کاملTHE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics
The Yarkovsky and YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effects are thermal radiation forces and torques that cause small objects to undergo semimajor axis drift and spin vector modifications, respectively, as a function of their spin, orbit, and material properties. These mechanisms help to (a) deliver asteroids (and meteoroids) with diameter D < 40 km from their source locations in the...
متن کاملGeneralized YORP evolution: Onset of tumbling and new asymptotic states
Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky– Radzievskii–O’Keefe–Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do t...
متن کاملThe Deformation of Asteroids from Yorp
Introduction: The Yarkovsky-O'Keefe-Radzievskii-Paddack, or "YORP" effect is a process that can modify the spin of small asteroids by the cyclical absorption and re-radiation of heat from the sun. That process has recently become a popular candidate for the formation of binary asteroids. Walsh et al. [1] reported a numerical study using an "N-body" code of the deformations of a rubble pile aste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006